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W A V E G U I D I N G  A N D  A N O M A L O U S  P R O P E R T I E S  

OF A P E R I O D I C  K N I F E - T Y P E  G R A T I N G  

S. V .  S u k h i n i n  UDC 517.947 + 534.14 + 534.2 

It is shown that periodic knife-type gratings always have waveguiding and anomalous properties. 
The dispersion relations for waveguide modes are obtained and the passbands are determined. 
The asymptoticaI form of the dispersion relations is obtained with an infinite increase in 
the length of the cascade elements and a decrease in the wave number. The effect of the 
geometrical characteristics and the type of grating on its waveguiding and anomalous properties 
is investigated. 

INTRODUCTION 

Waveguide-type generalized eigenfunctions describe the standing and traveling waves localized near 
a periodic structure. Studying the waveguide property is complicated by the fact that the corresponding 
self-conjugate extensions of the Laplace operator have a continuous spectrum. 

The author [1] showed the existence of the waveguiding property of a periodic knife-type grating with 
large-sized elements using the analytical Fredholm theorem. This property of knife-type gratings is attributed 
to the eigenoscillations near the plate in a channel [2]. The results of approximate studies of the waveguiding 
property of the gratings with rather large-sized elements (compared with the period), dispersion relations, 
and the form of the waveguide functions were given in [3, 4]. 

The present work shows the existence of the waveguiding property for arbitrary knife-type gratings by 
the "Dirichlet-Neumann bracket" method [5]. 

Definit ion.  The grating possessing both translational symmetry and the symmetry of the type of 
a second-order dihedral group D2 is called a simple knife-type grating (type I in Fig. 1; the points having 
the D2-type symmetry are crossed). The grating composed of two simple gratings with mutually intersecting 
interprofile channels and parallel elements of gratings (type II) is called a combined knife-type grating. The 
combined knife-type grating is called a double cascade if the interprofile channels are not intersected (type 
HI). 

1. FORMULATION AND SYMMETRY OF THE PROBLEM 

Let G be the profile of a knife-type grating of plates on the plane of the Cartesian coordinates {x, y} = 
R z and II = R2\G be the region of oscillations. It is assumed that G and fl are unidirectionally periodic 
along the y axis with period 1. If G is a simple knife-type grating, the coordinates of the profiles on the y 
axis are integers. Let f~l = {(z,y): - L/2 <<. x <~ L[2, 0 < y < 1}, ~2 = {(x,y):L[2 <<. x, 0 <<. y <~ 1}, 
fl3 = {(x,y):z  <~ - L / 2 ,  0 <~ y <~ 1}, and L be the length of the plate profile. The regions {(z,y): - L/2 <. 
z ~ L/2, k < y < k + 1} are called, the interprofile channels (k is an integer). Restricting the function u(x, y) 
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on the domain ftj is denoted by uj(z, y) (j = 1, 2, 3). All variables are dimensionless: the spatial variables are 
related to the natural grating period H, and the temporal variable to the characteristic time H/c, where c is 
the velocity of the signal. The origin of the coordinates is chosen in the center of one of the grating elements, 
and the ordinate is parallel to the direction of the grating periodicity. The notation is shown in Fig. 1 (on the 
right). 

The steady-state oscillations near the cascade are 
oscillations II, it satisfies the wave equation 

described by the function u(z, Y). In the region of 

uzz + uyy + A2u = 0. (1.1) 

Here A means the dimensionless frequency of oscillations and it is assumed that $ >/0. If w, Lg, and H are 
the real circular frequency of oscillations, the real length of the grating element, and the real grating period, 
respectively, then the expressions A = r and L = Lg/H are true for the dimensionless parameters and 
the grating period is equal to 1. The no-flow condition should be satisfied on the grating elements G: 

0u 
= 0, (1 .2)  

where n is the normal to the surface of the grating element. In any bounded domain f16, which is a subdomain 
of fl, the local-finiteness condition for the enerfly of oscillations should be valid: 

E(tt, ab) ---- l [ u  2 J r  ( V u ) 2 ]  d a b  < CO. (1.3) 

fib 

We call relations (1.1)-(1.3) Problem B. Because the Laplace operator is invariant under all motions 
of the plane R 2, the symmetry of the grating determines the symmetry of the corresponding boundary-value 
problem. 

Def in i t ion  1.1. A structure is unidirectionally periodic if it admits a group of locally plane symmetries 
containing a subgroup T of translations parallel to a certain vector. 

Since the group of symmetries of the unidirectionally periodic structure necessarily contains the 
subgroup T of translations along a certain y axis, only the following nontrivial subgroups of the group of 
admissible symmetries are possible: D1 is the dihedral group with one axis of mirror symmetry (two types of 
mirror symmetries are possible: D r is the axis of mirror symmetry parallel to the z axis and D~ is the axis 
of mirror symmetry parallel to the y axis), D2 is the dihedral group with two axes of mirror symmetry, C2 is 
the group of rotations on r ,  and T~ is the group of sliding symmetries. 

Knife-type gratings may be classified based on the groups of admissible symmetries. The simple knife- 
type grating has a maximum symmetry; it has points of symmetry of D2 type located at a distance of 1/2 
from each other (crosses in Fig. 1). The combined and double gratings can have points of C2-type symmetry 
located at a distance of 1/2 from each other if all the profiles are the same in dimensions. They usually have 
only the translational symmetry. 

The subgroups of symmetry of the grating allow one to divide the space of admissible solutions of 
Problem B into the corresponding invariant subspaces, which simplifies the analysis. The invariance of the 
problem relative to the mirror symmetry allows one to divide the space of admissible solutions into even and 
odd functions relative to the axis of symmetry. We used the invariance of the spaces of solutions of Problem 
B relative to the transformation D~, in which the axis of mirror symmetry passes through the centers of all 
the elements of the simple knife grating. In this case, the space of solution of Problem B can be divided into 
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a direct sum of two subspaces consisting of the symmetrical (even) u(+)(z,y) = D~u(+)(x, y) = u(+)(-z, y) 
and antisymmetrical (odd) u(-)(x, y) = -D~u(-) (z ,  y) = - u ( - ) ( - z ,  y) functions in the variable x. 

As the group of translations T is commutative and its representation T in the space of admissible 
solutions of Problem B is unitary, the space of solutions can be divided into one-dimensional subspaces 
invariant relative to the group T. The functions u(z, y), which belong to these subspaces, satisfy the conditions 

u(x, y + 1) = eir y) (1.4) 

and, as a result, have the form u(z, y) = e ~ v ( z ,  y), v(z, y + 1) = v(z, y) in the free domain of oscillations. 
Hereafter, i is an imaginary unity and ( is an arbitrary parameter ( - l r  < ~ ~< ~r) which describes the shift of 
the oscillation phase in the adjacent fundamental areas of the group of translations. Below, we call Problem 
B with condition (1.4) Problem B(~). Sometimes the representation of the form (1.4) is called the Floquet 
theorem or Rayleigh-Bloch waves. 

R e m a r k  1.1. By virtue of the translational symmetry, it suffices to consider Problem B(() in the 
domain {(z,y) : 0 ~< y ~< 1} bounded relative to y, i.e., in the band. Conditions (1.4) are satisfied in the 
entire domain of oscillations f / =  R2\G and allow one to extend the solutions to the entire plane from any 
fundamental domain of the group of translations. 

With other conditions not being specified, Problem B(~) is considered for a simple knife-type grating 
in the domain fl0 = f/1 U F/2 U f~3 for the values of the parameter ~ in the half-interval 0 < ~ ~< 7r. The self- 
conjugate extensions of the Laplace operator in the domain L2(fl) with condition (1.2) or the corresponding 
restrictions are considered. 

Defini t ion 1.2. The generalized eigenfunctions of Problem B(0), localized in the neighborhood of 
a knife-type grating, are called anomalous functions or solutions of this problem, an~t the corresponding 
frequencies are called anomalous frequencies. 

By virtue of the symmetry of Problem B(0) for a simple knife-type grating, if u*(z, y) is a generalized 
eigenfunction, the functions u*( -z ,y ) ,  u * ( - z , - y ) ,  uSym(z,y) -- u * ( z , y ) +  u*(z , -y ) ,  and uaSym(z,y) = 
u*(z, y) - u*(x , -y )  are its generalized eigenfunctions. The relations uSym(z, y) - u'ym(z,-y)  (the parity on 
the ordinate) and uUym(x, y) -- - u U y m ( z , - y )  (the oddness on the ordinate) are true. It is noteworthy that 
the mirror map relative to the abscissa (z, y) --* ( z , - y )  is a mirror map relative to the plate located in the 
coordinate origin. The lemma below is true. 

L e m m a  1.1. There are no nontrivial anomalous functions of Problem B(O) which are even relative to 
the axispassing through the 9rating element. 

Proof .  Let usym(z, y) be the anomalous function of Problem B(0) which is even relative to the abscissa, 
and usym(z,y) ----" usym(x,--y).  Since the function uSym(z,y) is periodic in the variable y with period 1, it is 
even relative to the axis containing any element of the grating. This means that the function Usym(z, y) is 
continuous in the entire domain and is a weak solution of Eq. (1.1) and a smooth solution by virtue of the 
theory of elliptical equations. Lemma 1.1 is proved. 

L e m m a  1.2. The anomalous function of Problem B(O) is odd relative to each axis parallel to the 
elements of the grating and passing through the point of symmetry of the dihedral group of this problem. 

Proof.  Let uasym(z, y) be the anomalous function of Problem B(0) which is odd relative to the abscissa 
and uaSYm(z, y) = --UasYm(z, --y). Because the function uaSym(z, y) is periodic in ~t with period I, the relations 

Uasym(x, y ")c 1) -- uUym(x, y) -~. -uasYm(:c , -y  - 1) (1.5) 

are true. 
The function uasym(z, - y  - 1) is the mirror reflection of the function Uasym(x, y) relative to the Zt = 1/2 

axis and, therefore, relations (1.5) means that it is odd relative to this axis. The statement of Lemma 1.2 
holds true by virtue of the periodicity of the anomalous function with period equal to the minimum period 
of the grating in y. 

The statements formulated in Lemmas 1.1 and 1.2 allow us to classify the modes of oscillations relative 
to the groups of admissible symmetries and to indicate the signatures of oscillations of the waveguide modes 

and/3 and the anomalous modes 7 and 8 in the interprofile channel (Fig. 2). Any waveguide (or anomalous) 
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function u(z, y) can be presented as a sum of the modes a and/3 (7 and 6): uCx, y) = uCa)(z, y) + u(~)(x, y) 
[or ~(~,u) = ~c~)(~, u) + ~c')(~, u)]. 

2. W A V E G U I D I N G  P R O P E R T Y  

Def in i t i on  2.1. A generalized eigenfunction of the corresponding self-conjugate extension of the 
Laplace operator for Problem B(~) is called a waveguide function of this problem if it is localized in the 
neighborhood of the grating of plates G. A generalized eigenfunction which is not waveguide is called a free 
function. The corresponding frequency of oscillations is called a waveguide or free frequency. 

The unidirectionally periodic structure G has the waveguide property if a nontrivial wave, t ide  function 
of Problem B(~) exists. The general solution of Eq. (1. I) with the quasi-periodicity condition (1.4) in the free 
space has the form 

+ c o  

uCx, y) = ~ ]  exp [i(2rn Jr ~)y][b + exp (Ixla.)  + be.-) exp ( - Ix la . ) ] ,  
n o o  

where/~. = ~/(2rn + ~)2 _ ~2. Therefore, the generalized eigenfunction u(z, y) is localized in the neighborhood 
of the grating only in the case where the representation 

+co 
u(x ,y)  = ~ b~• + ~)y] exp(-Ixl /~. )  (2.1) 

I t  O 0  

is true in the free spare with Re (/~.) > 0 for all terms. 
R e m a r k  2.1. If there is a bounded generalized eigenfunction of Problem B(~) of the form (2.1) for a 

certain ~. C 0 < J~. < ~), this function is a waveguide function. The set of waveguide frequencies of Problem 
B(~) is discrete in the entire set of real numbers [1] and, hence, finite on the interval 0 < A < ~. 

F o r m  of  t h e  W a v e g u i d e  Func t i on .  For even and odd oscillations in the variable x (of a and/3 
modes, respectively), the general representation of the waveguide solution of Problem B(~) has the form 

u~(x,y) -- .o ~in(~x) + ~ . .~cos(m,~) s i~(~,~, . )  ' 

+co 
u2Cx, Y) = Y]~ b,~ exp [i(2a'n + ~)y][exp (-I~lt3.)], (2.2) 

n o o  

u3(--x,y) = u2(x,y) or u3(--:r,,y) = --uz(x,y),  

where am = r 2 - ,~2 and a0 = i~. 
For the functions u(x, y) of the form (2.2) to be the solutions of Problem B(~) at the boundaries of 

the domains ftj, where j = 1, 2, 3, the continuity conditions for the solution and its normal derivative should 
be satisfied. By virtue of the symmetry of the problem (for a simple knife-type grating), it suffices that these 
conditions be satisfied at one boundary, for example, at the boundary of the domains fll and f12 (x = L/2 
and 0 ~< y ~< 1): 

Oul Ou2 
ul = u2, Ox Ox for x = L/2. (2.3) 

Conditions (2.3) mean that the function of the form (2.2) is a weak solution of Problem B((),  which 
is a strong solution of this problem by virtue of the theory of elliptical equations. 
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We used the "Dirichlet-Neumann bracket" method to study the existence of waveguide and anomalous 
frequencies [5]. Let the Dirichlet conditions (D) tt(z,y) = 0 for Izl = R > L/2 or the Neumann conditions 
(N) ~y(~,y)  = 0 for I~1 = R > L /2  be satisfied on the {(z,y) : z = R} and {(z,y) : z = - R }  lines, where 
0 < R < oo, in addition to the boundary conditions of Problem B(~). 

Problem B(~) with the additional condition D is denoted by B(DR) and with the condition N by 

B(NR). Let A (k) be the eigenfrequency of Problem B(DR), A (k) be the eigenfrequency of Problem B(NR), DR NR 
and ~(k)(~) be a certain eigenfrequency of Problem B(~); the frequencies are numbered in ascending order: 
k = 1, 2 , . . . ,  K. Since condition N expands the space of admissible solutions of Problem B(~), and condition 
D narrows this domain, for all numbers R > L/2 the inequalities 

A(l~)p.,. < A(k)(~ ') < A(I~ (k = 1, . . . ,  K)  (2.4) 
are true, which can be obtained by means of the variational statement of the problem [3]. 

R e m a r k  2.2. If the strict inequalities 0 < A(r~ ) and ~(k) "DR < t~ are fulfilled for k = K at some values of 
R >>. L/2 and K, it follows from relation (2.4) that no less than K waveguide eigenvalues of Problem B(() 
exist. 

Ex i s tence  of t h e  Wavegu ide  P rope r ty .  If R = L/2, condition D is a "soft" radiation condition. In 

this case, the first dimensionless eigenfrequency of longitudinal oscillations is A 0) r = 7r/L. Therefore, to DL/2~ ] 
AO) tJ:~ satisfy the inequality DL/2~I < ~, it suffices that 7r/L < ~. The inequality is satisfied if the dimensionless 

length of the profile satisfies the inequality rr/~ < L. As conditions (1.4) are true, for R > L/2 the rigorous 
inequality ANI~ > 0 holds true; it follows that the eigenvalue of Problem B(() exists and is strictly greater 
than zero if L > ~r/~. A more general statement is also true. 

T h e o r e m  2.1 (existence of the waveguide property). A simple knife-type grating always possesses the 
waveguide property. 

Proof.  It suffices to show that, for any value of L > 0, there is R > 0 such that the following inequalities 
are true: 

0 < < < (2.5) 

Estimate from Below. If R > L/2, the domain {(z, y ) : -  R < y < R}\G is connected and the solution 

of Problem B(NR) cannot be a constant by virtue of condition (1.4) and, hence, A(r~ > 0. 
Estimate from Above. Any solution u(z, y) of the problems B(~) in the domain ft has the form 

u = Udiseo,t + Uco,t, (2.6) 

where Udt~nt is a discontinuous function in the set G which describes a simple knife-type grating and ur 
is a function continuous in the domain fl tJ G. The function uai~ont is continuous at the edges of the profiles 
G; therefore, one can check that udi~ont ~ 0 in the domains f~9 and f~3. Using a certain finite and continuous 
function f(z) (/(z) = 0 for L/2 <~ I~1) such that the lo~-finiteness condition for the energy (1.3) is satisfied, 
one can represent Udi~ont (in the interprofile channel ill)  as 

{ f(z), [zl<L/2, O < y < l  } (2.7) 
U d i s c ~  = 0, Izl > L/2, 0 < y < I " 

In other interprofile channels, this function is found from (2.7) by multiplying by exp(i~) in the 
corresponding degree. Let the component tteont in the representation (2.6) have the form Ur = 
exp (i~y) cos (~rz/2R). This function satisfies Problem B(DR), except for the boundary condition (1.2), and is 
continuous in f~ U G. The function Udiscon t of the form (2.7) is representable as f(:r) = ae cos (rz/L), where ze 
is a constant. In other interprofile channels, the form of Ua~ont is determined by relation (1.4). For all values 
of ae, the relation which reflects the variational property of the eigenvalues is true [3]: 

_ / [vC~r  + Udiscont)] 2 d~R/-- / (Ueont + Udiscont) 2 dQR = p2(~ ,  R}. (2.8) 
f~R fir  
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Hereafter f i r  = fl0 n {(x, y):lx[ ~< R}. It is checked by a direct evaluation (this is the consequence of the 
bounded support of the function Udiscon t in the domain 9/1) that, for large values of R, the asymptotical 
representation p2(a~, R) ~ ~2 + A I R  + B / R  2 is true. The quantities A and B are ae-dependent. Since the 
parameters R and a~ axe independent, the value of A is determining for fairly large R. The expression A = 
(~r 2 - ~2L2)~e2/2L - 4L~ sin(()ae/~r holds true. Hence, the values of a are expected to be negative for small 
a~. Therefore, for large R and small positive a~, the strict inequality p2(ae, R) < ~2 is true. By virtue of this 
relation, inequalities (2.5) hold true. Theorem 2.1 is proved. 

Exis tence  of t h e  Waveguide  P rope r ty  for Combined  and Double  Kni fe -Type  Gratings.  
Defini t ion 2.2. Let G1 and G2 be simple knife-type gratings with the same spatial phase and 

orientation (Fig. 1), G - G1 t_l G2, the combination of the gratings, and [al, bl] and [a2, b2] be the projections 
of the elements G1 and G2 onto the x axis. The quantity L* = (b - a), where [a, b] = [al, bl] f3 [a2, b2], is the 
length of the shared part of the gratings. The parts of these gratings with coordinates [a, b] on the abscissa 
are called a common part of the gratings G1 and G2. 

The grating is combined if L* ~ 0 and double otherwise. The combined and double gratings may 
be considered as the perturbation of the simple knife-type grating G1 introduced by additional elements of 
the grating G2. For Problem B(~) with boundary conditions on G1, this means that the space of admissible 
solutions is extended: the discontinuities of the solution are possible on the segments G2. For combined and 
double gratings, a statement which is a consequence of Theorem 2.1 holds true. 

T h e o r e m  2.2 (the existence of the waveguide property in composite and double gratings). The 
combined and double knife-type gratings always have the waveguiding property. 

N u m b e r  of Wavegu ide  Modes .  Using relations (2.5), one can estimate the number of waveguide 
modes for each value of the parameter ~, which describes the shift of the phase of oscillations in the adjacent 
interprofile channels, 0 < ~ ~< ~r. 

T h e o r e m  2.3. For each fixed value of ~ (0 < ~ <~ rr) such that ~L/Tr is not an integer, the number K(~) 
of waveguide modes describing the waves which run in one direction satisfies the relations max(I, [~L/r]) ~< 
K(~) ~< [~L/x]+l. The greatest number K m ~  = K(~ = r) o// waveguide modes o//Problem B(~) which describe 
the waves running in one direction satisfies the relation [L] ~< Kmax ~< [L]+I. Here [] is the integer part of the 
corresponding number, l f  ~L/Tr is an integer, we have (~L/~r - 1) ~< K(~) ~< ~L/~r and (L - 1) ~</(max <~ L. 

Proof.  Let R = L[2 and ,~(~ and ,~(i~ ) be the eigenvalues of problem B(~) for the domain f~l with 
the Neumann or Dirichlet conditions on the boundary Ix l  - -  L/2, respectively. The following representations 
are true: 

{ NR}k=I ..... (K+I) ---- {0,Tr/L, . . . , (K - I)lr/L, KIr /L >/~}, { DR}t+I  ..... K = {Tr /L , . . . ,KTr /L} .  

As the number of the waveguide modes on the interval of admissible frequencies (0, ~) cannot be greater 
than K* such that ~(K*) ~(K*+I) ~(K.+I) "NR < ~ ~< "NR and is not less than K. such that A(K*)DR < ~ ~< "DR , the fact that 
was to be shown follows from this representation. 

Dispers ion Rela t ions .  Passbands.  The parameter ~ from relation (1.4) may be regarded as a wave 
number for the waveguide function of a knife-type grating. The dimensionless waveguide frequencies A depend 
on ~; these dependences are the dispersion relations. The approximate dispersion relations for the elements 
of a large-sized grating were given in [4]; here we give them in a refined form. 

If one takes into account the form of the waveguide function in the free space and the interprofile 
channel, conditions (2.3) are equivalent to the equalities 

1 

0 

bn = exp(13nL/2) I i  Oul(L/2, y) e x p [ - i y ( ,  + 2rcn)]dy} 
8,, - -  Oz J 

0 

for/3n r  n =0 ,  + l ,  + 2 , . . . .  
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Fig. 3 

As a result, we obtain an infinite homogeneous set of equations for desired quantities {a,~} (m are 
integers), which define the function Ul: 

{ ] [  10ux(L/2 ,Y) . l exp[_ iy (~+2~ .n ) ]dy}=O,  n = 0 , : k l , : E 2 ,  . . .  (2.9) ul(L/2, y) § ~,~ 8x 
o 

After the integration, the change of the desired variables, and the simplification, the homogeneous system 
(2.9) takes the following form relative to the quantities {Sin}: 

-<,., J<'' 
This system has the canonical form, and one can study it by the method of expansion of the determinant [4]. 
The consequence is the dispersion relation which is true for all waveguide modes: 

Here 

sin [O(A, ~)] = 0. (2.10) 

A' A A - 2 ~ arcsin - + 2  y~ arcsin 2n~-+ ~ + arc.sin 2nlr - ~ ~ ; 
n = l  n = l  

N is a natural number and ~(...) is the logarithmic derivative of the gamma-function. The dispersion relation 
(2.10) was investigated numerically. 

Waveguide Modes. Passbands. One can describe the wave motion along the direction of the 
periodicity of the grating (along the y axis in our case) by a function of the form u(x, y, t) -- u*(x, y) exp (-/At), 
where u*(z,y) is a waveguide function of Problem B(~). According to (1.4), in the free space we have 
u(x,y,t) = v*(x,y) exp[i(~y - At)]. The function v*(x,y) is periodic in the variable y, i.e., v*(x,y § I) = 
v*(x, y), and is localized in the neighborhood of the knife-type grating. It may be considered to be the complex 
amplitude of the corresponding waveguide mode. This viewpoint allows us to consider the waveguide modes 
as the wave running along the direction of the periodicity and to determine the lengths Lw and the phase 
velocities Cphas e of the waves described by the waveguide modes: Lw = 2r and Cpha.se = A/~. 

The dispersion relation (2.10) implicitly determines the dimensionless waveguide frequency as a function 
of the wave number for each waveguide mode: Ak = Ak(~), k = 1, . . . ,  Kmax. Figure 3 shows diagrams of these 
functions for various lengths of the elements of the knife-type grating (L = 3 and 6) and the lines A = ~ and 
A = 27r - ~. The range of variation of the wave number ~ is chosen from 0 to 27r; in the range (-Tr, 0), the 
dispersion relations are determined using the symmetries and periodicity of the problem with respect to ~. 
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S t a t e m e n t  2.1. For any length L of the elements of the knife-type grating, there is a finite number 
of dispersion relations corresponding to the waveguide modes. The number Kmax of dispersion relations is 
determined by Theorem 2.3 for waves running in the same direction. 

T h e o r e m  2.4. For any length L of the elements of a knife-type grating, there are a finite number of 
passbands, which are determined by the half-interval ~rl = (0, A~ ax] and the segments ak = {A : (k - 1 )r /L  < 
A~  n <~ A <~ A~ ax < k~r/L}, where k = 2 , . . . ,  Kmax. The passbands with odd numbers correspond to the c~ 
modes, and those with even numbers to the t3 modes (a2k-1 ~ c~k and ~r2k ~ 13k, where k = 1 , . . . ,  [Kmax/2]). 

The upper and lower boundaries of the passbands as functions of the length of the grating element 
can be found using the dispersion relation (2.10). The upper boundaries are determined by the substitution 

= ~r, and the lower boundaries by the substitution ~ = A in (2.10). 
Figure 4 shows the width and number of passbands of a simple knife-type grating versus its geometrical 

parameters for the corresponding waveguide modes. 
The above statements supplement, update, and agree with the results obtained by other methods and 

at the "physical" level of rigor [4]. 
The consequence of the symmetry of the problem and hence the dispersion relations relative to the 

wave number ~ with respect to the point ~ = 7r is the fact that the group velocity Cgroup of the waves described 
by the waveguide modes is zero (Cgroup = 0) at the point ~ = r for all the waveguide modes. Therefore, the 
unidirectional periodic knife-type grating has Kmax resonance frequencies Ak = Ak(r), k = 1 , . . . ,  Kmax. This 
is an important difference between the knife-type grating and the discrete periodic structure of mass-spring 
type. 

A s y m p t o t i e a l  R e p r e s e n t a t i o n  of  t he  Di spe r s ion  Re l a t i ons  for t h e  F i r s t  Wavegu ide  Modes .  
For an infinite lengthening of the grating elements, relations (2.10) allow one to determine the behavior of 
the waveguide frequencies A (t) -- A(k)(~, L) of Problems B for the first waveguide modes (k = 1 ,2 , . . . )  in the 
neighborhood of zero. The expressions 

2 t a n  

A(k)(~, L) -- L~r tan ( ~ / 2 )  - ~r - 2 ~ ( ~ / 2 ~ )  tan (~ /2 )  - 2 In (2) tan ( ~ / 2 )  - 27  tan ( ~ / 2 ) '  

klr 2 
= L)  = 

LTr + 2 In (2) 

are true (7 is the Euler constant and L >> 1). 
For the first waveguide mode, at ~ << 1 and L > 1 the consequence of (2.10) is the expression 

A0)(~) = ~ - (L~r - 2 In (2))2~a/~r 2, which describes the waveguide frequencies of the first mode versus the 
shift of the oscillation phase in the neighboring funda~nental domains of the group of translations. 

3. ANOMALOUS PROPERTY. FINE STRUCTURE OF THE SPECTRUM 

T h e o r e m  3.1. The nontrivial anomalous frequencies and the anomalous functions of Problem B(0) 
exist for any lengths of the profiles of a simple knife-type grating; note that the anomalous frequencies belong 
to the range (Tr,27r). 

Proof .  The proof is similar to that of Theorem 2.1. 
Estimate from Below. By virtue of Lemma 1.2, the antisymmetry condition for anomalous oscillations 

with respect to the y = 1/2 axis is true, whence follows the estimate from below. It suffices to consider the 
case of R = L[2, for which the inequality ~" ~< ANR holds true. 

Estimate from Above. In (2,6), it suffices to choose the components Ucont and Udiseont of the approximate 
anomalous function satisfying the conditions of Lemma 1.2 in the form 

f 1/2) cos( x/L), {1 1 < L/2,  0 < y < 1} 
= sin(2ry) cos (Trz/2R), Ucont Udiscont O, {Ix l> L / 2 , 0 < y < 1 }  S" 
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For large R and small ze, the strict inequality g2(ze, R) < 47r 2 [in the notation of (2.8)] is true. Theorem 
3.1 is proved. 

Together with the passbands, which belong to the range (0, ~r2), the spectrum of the operator of Problem 
B contains a finite set of generalized eigenvalues corresponding to the frequencies of anomalous oscillations. 

T h e o r e m  3.2. In the range (~r, 2~r), the number K(L) of frequencies of the anomalous modes of 
oscillations satisfy the relations max(l ,  [Lv~]) ~< K(L) ~< [Lv~] + 1. Here []  is the integer part of the 
corresponding number. If LV~ is an integer, we have (Lv~ - 1) ~< K(L) <~ LV~. 

Proof.  Let R = L/2 and A(~)R and A(I~)R be the eigenfrequencies of Problem B(0) for the domain 1"ll 
with the Neumann or Dirichlet conditions at the boundary [zl = L/2, respectively. For a certain natural 
number K, the expressions for the eigenvalues, numbered in ascending order, are as follows: 

. . . . .  = { , , , ,v ' i -+ + o K -  + s-2/  

(~(~}R}k=, ..... Z = {"71 + 1/L,.. . , ,q'l  + (K - 1)2/L, r e t  + K2/L >t 2~r}. 

Since the number of anomalous frequencies in the range (r ,  2~r) cannot be greater than K* such that ~(K*) 
~NR < 

~(K*+I) I(K.+I) 2~r ~< "Nit and is not less than K, such that A(K,) DR < 2~r ~< "DR , the fact that was to be shown follows. 
In the corresponding domains, for the 7 and 6 modes of oscillations the solutions of Problem B(0) have 

the form 

ul(x,y) = m=l ~-" am cos[ (2m-  1)~ry] s inh[x~/(2m- 1)27r 2 -  A 2 ] ' 

+ ~  { ~(-~,y) = ~(~,y) } 
u2Cz, y) = ~ bn sin (2~rny) exp [-zx/(21rn)2 - A21, 

. = ~  ~3(-~,y) -~2(~,y) 
After the solutions in this form are substituted into (2.3), one can obtain relations which were discretized and 
studied numerically by the method of taking into account directly the finite character of the energy [2]. 

Figure 4 shows the frequency of anomalous oscillations versus the length of the element of a simple 
grating for the 7 and ~7 modes. For the case of L = 2, the field of velocities, the level lines, and the pressure 
field for the "1'2 mode in the interprofile channel 0 < y < 1 are shown in Fig. 5. The form of the modes of 
anomalous oscillations in other interprofile channels is determined by the periodicity condition. The mechanical 
analog of these modes is the oscillations of several coupled chains of coupled oscillators: the 71 mode is 
synphase oscillations of one chain, the 61 mode is synphase oscillations of two coupled chains (the chains are 
in antiphase), and the 3'2 mode is the synphase oscillations of three coupled chains (two chains oscillate in 
phase, and one chain in antiphase relative to each other). It is worth noting the great difference between-the 

866 



P~ssbands Anomalous Desired 
frequencies spectrum 

a,  a 2 ~ a~: . . . . .  
0 a, fl, z ~,, ~, Y2 2~r 

Fig. 6 

anomalous oscillations near a grating and the synphase oscillations of the chain of coupled oscillators. 
R e m a r k  3.1. The frequency of anomalous oscillations near a simple knife-type grating is greater 

than the frequency of waveguide oscillations. The frequency of synphase oscillations of the chain of coupled 
oscillators is smaller than the frequency of waveguide modes. 

The results allow one to refine the fine structure of the spectrum of self-conjugate extensions of 
the Laplace operator, which corresponds to Problem B for a simple knife-type grating. In terms of the 
dimensionless frequendes, the fine structure of the spectrum of Problem B is shown in Fig. 6. It is necessary 
to note that, according to the proved theorems for any length of the grating elements, there is always at least 
one passband (of type a)  and one frequency of anomalous oscillations (of type 7)- 

The passbands of a simple knife-type grating belong to the range (0, ~r), the dimensionless frequencies 
of anomalous oscillations are (It, 2~r), and the number of the passbands and anomalous frequencies depend on 
the lengths of the elements of the simple knife-type grating. 

Conclusions.  (1) It was proved that simple combined and double knife-type gratings always have the 
waveguide and anomalous properties. The criteria for the existence of these properties for various waveguide 
modes were obtained. It was shown that there are a finite number of passbands and anomalous modes, and 
these modes were attributed to the admissible symmetries. 

(2) Approximate dispersion relations which describe the propagation of the waves localized in the 
neighborhood of simple knife-type gratings were obtained and analyzed. The asymptotical form of the 
dispersion relations was investigated with an infinite increase in the dimensions of the grating elements and a 
decrease in the shift of the oscillation phase in the adjacent fundamental domains of the group of translations. 

(3) The waveguide and anomalous frequencies and the number of waveguide and anomalous modes 
versus the linear dimensions of the elements of a simple knife-type grating were investigated. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00894). 
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